Phosphine and isonitrile complexes of η^{5}-tetramethylcyclopentadienylrhodium chlorides; crystal structures of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{R}\right)\left(\mathrm{R}=\mathrm{Ph}\right.$ or $\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)$

Áine M. FitzGerald, Mark Nieuwenhuyzen, Graham C. Saunders *
School of Chemistry, The Queen's University of Belfast, David Keir Building, Belfast BT9 5AG, UK

Received 12 February 1999; received in revised form 10 March 1999

Abstract

The reaction between $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}(\mu-\mathrm{Cl})\right]_{2}$ and the phosphines $\mathrm{PPh}_{2} \mathrm{R}\left(\mathrm{R}=\mathrm{Ph}\right.$ or $\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ or cyclohexylisonitrile yields the complexes $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}_{2} \mathrm{~L}\left(\mathbf{1}, \mathrm{~L}=\mathrm{PPh}_{3} ; \mathbf{2 , L}=\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) ; \mathbf{3}, \mathrm{L}=\mathrm{CNC}_{6} \mathrm{H}_{11}\right)$. The structures of complexes $\mathbf{1}$ and $\mathbf{2}$ have been determined by single-crystal X-ray diffraction. Both exhibit three-legged piano stool geometry about the rhodium atom. Unlike the structures of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2} \mathrm{~L}$ complexes, the rhodium atoms of $\mathbf{1}$ and $\mathbf{2}$ do not lie on axes normal to the C_{5} centroids, but are displaced towards the CH carbon atoms. Treatment of $\mathbf{1}$ with cyclohexylisonitrile or $\mathbf{3}$ with $\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ in the presence of NaBF_{4} yield the chiral-at-metal salts $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}^{2}\left(\mathrm{PPh}_{2} \mathrm{R}\right)\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)\right]^{+} \cdot \mathrm{BF}_{4}^{-}$as racemic mixtures. The bis(isonitrile) complex, $\left.\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)\right)^{2}\right]^{+} \cdot \mathrm{BF}_{4}^{-}$, is formed similarly from 3. Treatment of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}(\mu-\right.$ $\mathrm{Cl})]_{2}$ with dppe in the presence of NaBF_{4} yields $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}^{2}(\mathrm{dppe})\right]^{+} \cdot \mathrm{BF}_{4}^{-}$. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: Crystal structure; Phosphine; Rhodium

1. Introduction

Recently we reported that the reaction between the tetramethylcyclopentadienylrhodium complex [($\eta^{5}-$ $\left.\left.\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}(\mu-\mathrm{Cl})\right]_{2}$ and the diphosphine $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}-$ $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ (dfppe) displays remarkable regioselectivity and yields an asymmetric cation originally formulated as $\left[\left\{\eta^{5}-\mathrm{C}_{5} \mathrm{HMe}_{2}-2,4-\left[\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{~F}_{4} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.\right.\right.$ -$\left.\left.\left.\mathrm{CH}_{2}\right]_{2}\right\}-1,3-\mathrm{RhCl}\right]^{+}$[1]. This formulation was based on the regiospecific synthesis of $\left[\left\{\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{3}\left[\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{~F}_{4} \mathrm{P}\right.\right.\right.$ $\left.\left.\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{CH}_{2}\right]_{2}-1,3\right\} \mathrm{RhCl}\right]^{+}$by the reaction between $\left[\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}(\mu-\mathrm{Cl})\right]_{2}$ and dfppe [2]. Subsequently it has been found that the original formulation is wrong and the cation is $\left[\left\{\eta^{5}-\mathrm{C}_{5} \mathrm{HMe}_{2}-3,4-\left[\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{~F}_{4} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.\right.\right.$ -$\left.\left.\left.\mathrm{CH}_{2}\right]_{2}\right\}-1,2-\mathrm{RhCl}\right]^{+}$[3] (Fig. 1). In order to understand the differences between the reactions involving the te-tramethyl- and pentamethyl-cyclopentadienylrhodium complexes, we wished to compare simple tetramethyland pentamethyl-cyclopentadienylrhodium phosphine

[^0]complexes of the type $\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{R}\right) \mathrm{RhCl}_{2}\left(\mathrm{PR}_{3}^{\prime}\right),\left[\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{R}\right) \mathrm{RhCl}\left(\mathrm{PR}_{3}^{\prime}\right) \mathrm{L}\right]^{+} \cdot \mathrm{X}^{-} \quad(\mathrm{L}=$ two-electron donor ligand) and $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{R}\right) \mathrm{RhCl}\left(\mathrm{R}_{2}^{\prime} \mathrm{PCH}_{2} \mathrm{CH}_{2}-\right.\right.$ $\left.\left.\mathrm{PR}_{2}^{\prime}\right)\right]^{+} \cdot \mathrm{X}^{-}(\mathrm{R}=\mathrm{H}$ or Me$)$. Despite numerous examples of pentamethyl-cyclopentadienylrhodium phosphine chloride complexes [4-14], to our knowledge there are no reports of tetramethylcyclopentadienyl analogues. Therefore, it was decided to prepare and investigate these complexes.

2. Results and discussion

2.1. Synthesis and characterization of η^{5}-tetramethylcyclopentadienylrhodium phosphine and isonitrile complexes

Treatment of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}(\mu-\mathrm{Cl})\right]_{2}$ [15] with two equivalents of PPh_{3} or $\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ in refluxing dichloromethane gave the complexes $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4}-\right.$ H) $\mathrm{RhCl}_{2}\left\{\mathrm{PPh}_{x}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3-x}\right\}(\mathbf{1} x=3, \mathbf{2} x=2)$ in moderate yields (Scheme 1). As for the pentamethyl-cyclopen-

Fig. 1. The cations formed in the reactions between $\left[\left(\eta^{5}\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{R}\right) \mathrm{RhCl}(\mu-\mathrm{Cl})\right]_{2}$ and dfppe: (i) $\mathrm{R}=\mathrm{Me}$, $\left[\left\{\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{Me}_{3}\left[\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{~F}_{4} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{CH}_{2}\right]_{2}-1,3\right\} \mathrm{RhCl}\right]^{+}$; and (ii) $\mathrm{R}=\mathrm{H}$, $\left[\left\{\eta^{5}-\mathrm{C}_{5} \mathrm{HMe}_{2}-3,4-\left[\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{~F}_{4} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{CH}_{2}\right]_{2}-1,2\right\} \mathrm{RhCl}\right]^{+}$.
tadienyl analogue, no reaction was observed with the bulkier phosphine $\mathrm{PPh}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ [12]. Complexes $\mathbf{1}$ and $\mathbf{2}$ were characterized by elemental analysis and NMR spectroscopy (Table 1). The ${ }^{31} \mathrm{P}$-NMR resonances of $\mathbf{1}$ and 2 appear as doublets at $\delta 31.4$ and 21.4, respectively. These values are at higher frequency than those of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}\left(\mathrm{PPh}_{3}\right)$, $\delta \quad 7.9$ [11], and ($\eta^{5}-$ $\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}\left\{\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right\}, \delta 18.8$ [12], and in contrast to these complexes the resonance of the triphenylphosphine complex $\mathbf{1}$ is at higher frequency to that of the pentafluorophenyldiphenylphosphine complex 2. The ${ }^{1} \mathrm{H}$-NMR spectra of $\mathbf{1}$ and $\mathbf{2}$ show no coupling between
the phosphorus and the cyclopentadienyl hydrogen. The methyl resonances of $\mathbf{1}$ and $\mathbf{2}$ appear as a pair of doublets at ca. $\delta 1.7$ and 1.2. The higher frequency resonances show a larger coupling to phosphorus of ca. 5 Hz and the lower frequency resonances show a coupling of ca. 1 Hz . In comparison the values of $\left|{ }^{4} J_{\mathrm{P}-\mathrm{H}}\right|$ for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}\left(\mathrm{PPh}_{3}\right)$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}-$ $\left\{\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right\}$ are 4 and 2.2 Hz , respectively [5,12]. Treatment of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}(\mu-\mathrm{Cl})\right]_{2}$ with two equivalents of cyclohexylisonitrile in dichloromethane at room temperature afforded the complex (η^{5} $\left.\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}_{2}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)(3)$ in high yield (Scheme 1). Compound 3 exhibits $v(\mathrm{CN})$ at $2214 \mathrm{~cm}^{-1}$, which is similar to that of $2220 \mathrm{~cm}^{-1}$ for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}-$ $\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)$ [6].
Treatment of $\mathbf{1}$ with cyclohexylisonitrile in the presence of NaBF_{4} in methanol/dichloromethane afforded the salt $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)\right]^{+} \cdot \mathrm{BF}_{4}^{-} 4$ as a yellow solid. The analogous salt, [(η^{5} $\left.\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}\left\{\left(\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right\}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)\right]^{+} \cdot \mathrm{BF}_{4}^{-} \quad$ (5) , was prepared by an alternative route from 3 and $\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$. Both $\mathbf{4}$ and 5 possess chirality at the rhodium, and are formed as racemic mixtures. Treatment of compound 3 with cyclohexylisonitrile and

Scheme 1. (i) PPh_{3} or $\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux; (ii) $\mathrm{CNC}_{6} \mathrm{H}_{11}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iii) $\mathrm{CNC}_{6} \mathrm{H}_{11}, \mathrm{NaBF}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$; (iv) $\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right), \mathrm{NaBF}_{4}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$; (v) dppe, $\mathrm{NaBF}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$.

Table 1
Analytical and NMR data for compounds 1-7

Compound	Analysis (\%) ${ }^{\text {a }}$	$\begin{aligned} & v(\mathrm{C}=\mathrm{NR}) \\ & \left(\mathrm{cm}^{-1}\right)^{\mathrm{b}} \end{aligned}$	NMR ${ }^{\text {c }}$
1	C, 58.0 (58.2); H, 5.1 (5.1)		${ }^{1} \mathrm{H}: 7.88\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.38\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.26(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{Me}_{4} H$), $1.71\left(\mathrm{~d},{ }^{4} J_{\mathrm{P}-\mathrm{H}} 4.8,6 \mathrm{H}, \mathrm{Me}\right), 1.13$ (d, $\left.{ }^{4} J_{\mathrm{P}-\mathrm{H}} 1.2,6 \mathrm{H}, \mathrm{Me}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}: 31.4\left(\mathrm{dm},{ }^{1} J_{\text {Rh-P }}{ }^{142}\right)$
2	C, 49.5 (50.1); H, 3.2 (3.6)		${ }^{1} \mathrm{H}: 7.84\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.32\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.62\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}\right)$, $1.69\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{P}-\mathrm{H}} 5.7,6 \mathrm{H}, \mathrm{Me}\right), 1.23\left(\mathrm{~d},{ }^{4} J_{\mathrm{P}-\mathrm{H}} 0.7,6 \mathrm{H}, \mathrm{Me}\right) .{ }^{19} \mathrm{~F}$: $-120.59\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{\text {ortho }}\right),-148.49\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}-\mathrm{F}} 20.5,1 \mathrm{~F}, \mathrm{~F}_{\text {para }}\right)$, $159.53\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{\text {meta }}\right) \cdot{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}: 21.4\left(\mathrm{dm},{ }^{1} J_{\mathrm{Rh}-\mathrm{P}} 147\right)$
3	$\begin{aligned} & \mathrm{C}, 46.85 \text { (47.55); H, 6.0; N } \\ & 3.3 \text { (3.5) } \end{aligned}$	2214	${ }^{1} \mathrm{H}: 5.00\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}\right), 3.99(1 \mathrm{H}, \mathrm{m}, \mathrm{CNCH}), 1.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}\right)$, $1.84(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.79\left(6 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.54\left(6 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{Rh}-\mathrm{H}} 1.7, \mathrm{Me}\right)$, $1.42\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{11}\right)$
$4^{\text {d }}$	$\begin{aligned} & \text { C, } 55.0 \text { (54.6); H, } 4.9 \text { (5.3); } \\ & \text { N } 2.1 \text { (1.8) } \end{aligned}$	2216	${ }^{1} \mathrm{H}: 7.51\left(\mathrm{~A}_{2} \mathrm{~B}_{2} \mathrm{CM}\right.$ spin system, 15 H$), 5.31\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 5.09(1 \mathrm{H}$, s, $\left.\mathrm{C}_{5} \mathrm{Me}_{4} H\right), 3.86(1 \mathrm{H}, \mathrm{m}, \mathrm{CNCH}), 1.93\left(3 \mathrm{H}, \mathrm{d},{ }^{4} J_{\mathrm{P}-\mathrm{H}} 3.6, \mathrm{Me}\right)$, $1.87\left(3 \mathrm{H}, \mathrm{d},{ }^{4} J_{\mathrm{P}-\mathrm{H}} 5.8, \mathrm{Me}\right), 1.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.55(3 \mathrm{H}, \mathrm{d}$, $\left.{ }^{3} J_{\mathrm{Rh}-\mathrm{H}} 0.8, \mathrm{Me}\right), 1.49\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.22\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.19$ $\left(3 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{P}-\mathrm{H}} 5.9, \mathrm{Me}\right) .{ }^{19} \mathrm{~F}:-153.19$ and $-153.25(2 \mathrm{~s}, 1: 4,4 \mathrm{~F}$, BF_{4}^{-})
$5{ }^{\text {e }}$	$\begin{aligned} & \text { C, } 49.2 \text { (49.6); H, } 4.5 \text { (4.2); } \\ & \text { N } 1.6 \text { (1.7) } \end{aligned}$	2214	${ }^{1} \mathrm{H}: 7.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PPh}_{2}\right), 7.58\left(8 \mathrm{H}, \mathrm{m}, \mathrm{PPh}_{2}\right), 5.30\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 5.21$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{Me}_{4} H\right), 3.81(1 \mathrm{H}, \mathrm{m}, \mathrm{CNCH}), 1.91\left(3 \mathrm{H}, \mathrm{d},{ }^{4} J_{\mathrm{P}-\mathrm{H}} 6.1\right.$, $\mathrm{Me}), 1.82\left(3 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{P}-\mathrm{H}} 3.5, \mathrm{Me}\right), 1.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.76(3 \mathrm{H}$, d, $\left.{ }^{4} J_{\mathrm{P}-\mathrm{H}} 2.6, \mathrm{Me}\right), 1.45\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.39\left(3 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{Rh}-\mathrm{H}}, 5.0\right.$ $\mathrm{Me}), 1.27\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}\right) .{ }^{19} \mathrm{~F}:-123.59\left(2 \mathrm{~F}, \mathrm{~d},{ }^{3} J_{\mathrm{F}-\mathrm{F}} 19.0\right.$, $\left.\mathrm{F}_{\text {ortho }}\right),-144.78\left(1 \mathrm{~F}, \mathrm{~m}, \mathrm{~F}_{\text {para }}\right),-153.26$ and $-153.32(2 \mathrm{~s}, 1: 4,4 \mathrm{~F}$, $\left.\mathrm{BF}_{4}^{-}\right),-159.54\left(2 \mathrm{~F}, \mathrm{~m}, \mathrm{~F}_{\text {meta }}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}: 24.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{Rh}-\mathrm{P}}{ }^{131}\right)$
6	$\begin{aligned} & \text { C, } 49.2 \text { (48.9); H, } 6.4 \text { (6.2); } \\ & \text { N } 4.2 \text { (5.0) } \end{aligned}$	2222	${ }^{1} \mathrm{H}: 5.78\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{Me}_{4} H\right), 4.15(2 \mathrm{H}, \mathrm{m}, \mathrm{CNCH}), 2.00(6 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $1.88(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.78\left(8 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.52\left(12 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}\right) .{ }^{19} \mathrm{~F}$: -153.21 and $-153.27\left(2 \mathrm{~s}, 1: 4,4 \mathrm{~F}, \mathrm{BF}_{4}\right)$
$7{ }^{\text {f }}$	C, 54.7 (54.9); H, 5.1 (4.9)		${ }^{1} \mathrm{H}: 7.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{p}\right), 7.45\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.28\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $5.48\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}\right), 3.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}_{2}\right), 2.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.19$ $(\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}), 0.95(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}){ }^{\mathrm{g}}{ }^{19} \mathrm{~F}:-152.23$ and $-152.29(2 \mathrm{~s}, 1: 4$, $\left.4 \mathrm{~F}, \mathrm{BF}_{4}\right) .{ }^{\mathrm{g}}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}: 23.7\left(\mathrm{dm},{ }^{1} J_{\mathrm{Rh}-\mathrm{P}}{ }^{138}\right)^{\mathrm{g}}$

${ }^{a}$ Required values are given in parentheses.
${ }^{\mathrm{b}} \mathrm{KBr}$ disc
${ }^{\text {c }}$ Unless stated otherwise recorded in CDCl_{3} at 298 K .
${ }^{\mathrm{d}}$ Crystallized with $0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
${ }^{\mathrm{e}}$ Crystallized with $0.25 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
${ }^{\mathrm{f}}$ Crystallized with $0.33 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
${ }^{g}$ Recorded in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$.
sodium tetrafluoroborate yielded the bis(isocyanide) complex $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{2}\right]^{+} \cdot \mathrm{BF}_{4}^{-} \quad$ (6). The analytical and NMR spectroscopic data of 4-6 (Table 1) are entirely consistent with these formulations. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{4}$ and 5 display four methyl resonances due to the chirality at the rhodium atom. All these resonances show coupling to phosphorus. For both salts there are two resonances with $\left|{ }^{4} J_{\mathrm{P}-\mathrm{H}}\right|$ of ca. 6 Hz , one with a coupling of ca. 3.5, and the other has a coupling of 0.8 for $\mathbf{4}$ and 2.6 Hz for 5 . The phosphine complexes $\mathbf{4}$ and $\mathbf{5}$ exhibit $v(\mathrm{CN})$ at ca. 2215 and 6 at $2222 \mathrm{~cm}^{-1}$, which are comparable with those of 2210 and $2212 \mathrm{~cm}^{-1}$ for $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}-\right.$
$\left.\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)\right]^{+} \cdot \mathrm{BPh}_{4}^{-} \quad$ and $\quad\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}-\right.$ $\left.\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{2}\right]^{+} \cdot \mathrm{BPh}_{4}^{-}$, respectively [6].

Treatment of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}(\mu-\mathrm{Cl})\right]_{2}$ with NaBF_{4} in methanol, followed by addition of dppe in dichloromethane gave the salt $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}-\right.$ (dppe) $]^{+} \cdot \mathrm{BF}_{4}^{-} 7$ in 69% yield (Scheme 1). The salt was characterized by elemental analysis and NMR spectroscopy (Table 1). In contrast to the salts $\mathbf{4}$ and $\mathbf{5}$, coupling between the phosphorus atoms and the hydrogen atoms of the tetramethylcyclopentadienyl group is not observed, and the three resonances appear as singlets at $\delta 5.48,1.19$ and 0.95 . The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectrum shows a doublet resonance at $\delta 23.7$ with a

Fig. 2. Molecular structure of one of the independent molecules of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}_{2}\left(\mathrm{PPh}_{3}\right)$ (1). Displacement ellipsoids are shown at the 30% probability level. All hydrogen atoms are omitted for clarity.
coupling, $\left.\right|^{1} J_{\mathrm{Rh}-\mathrm{P}} \mid$, of 138 Hz . The value of δ_{P} is 42.5 ppm to lower frequency of that of the pentamethyl-cyclopentadienyl analogue, but the value of $\left|{ }^{1} J_{\mathrm{Rh}-\mathrm{P}}\right|$ is only slightly larger [14].

2.2. Crystal structures of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{R}\right)$ (1 $R=P h ; 2 R=C_{6} F_{5}$)

Complexes $\mathbf{1}$ and 2 were further characterized by single-crystal X-ray diffraction (Figs. 2 and 3). The crystallographic data are given in Table 2 and selected interatomic distances and angles are given in Table 3. The structures of both complexes contain two indepen-

Fig. 3. Molecular structure of one of the independent molecules of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}_{2}\left\{\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right\}$ (2). Displacement ellipsoids are shown at the 30% probability level. All hydrogen atoms are omitted for clarity.

Table 2
Crystallographic data for ($\left.\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}_{2}\left(\mathrm{PPh}_{3}\right)$ (1) and (η^{5} $\left.\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}_{2}\left\{\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right\}$ (2)

Formula	$\mathrm{C}_{27} \mathrm{HCl}_{2} \mathrm{P}_{2} \mathrm{Rh}$	$\mathrm{C}_{27} \mathrm{HCl}_{2} \mathrm{~F}_{5} \mathrm{P}_{2} \mathrm{Rh}$
Formula weight	557.27	647.23
Crystal system	Triclinic	Monoclinic
Space group	$P \overline{1}$	$P 2{ }_{1} / \mathrm{c}$
$a(\mathrm{~A})$	10.3720(8)	19.908(2)
b (A)	14.8314(12)	14.8641(12)
$c($ A)	15.7755(14)	17.920(2)
$\alpha\left({ }^{\circ}\right)$	86.176(7)	-
$\beta\left({ }^{\circ}\right.$)	83.742(7)	102.279(7)
$\gamma\left({ }^{\circ}\right.$	88.483(7)	-
$V\left(\AA^{3}\right)$	2406.5(3)	5181.6(9)
Z	$4^{\text {a }}$	$8{ }^{\text {a }}$
Crystal size (mm)	$0.58 \times 0.36 \times 0.16$	$0.76 \times 0.52 \times 0.44$
Diffractometer	Siemens P4	Siemens P4
Radiation (λ, \AA)	Mo- K_{α} (0.71073)	Mo-K ${ }_{\alpha}(0.71073)$
Monochromator	Graphite	Graphite
$\mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)\left(\mathrm{mm}^{-1}\right)$)1.011	0.979
T (K)	153(2)	153(2)
Scan method	ω	ω
h, k, l ranges	$\begin{aligned} & 0-12,-17-17, \\ & -18-18 \end{aligned}$	$\begin{aligned} & -23-23,-17-0, \\ & -21-0 \end{aligned}$
2θ limits $\left({ }^{\circ}\right.$)	4.5-50	4.2-50
Total reflections	8995	9459
Unique reflections	$8484\left[R_{\text {int }}=0.0197\right]$	$9128\left[R_{\text {int }}=0.0156\right]$
Observed reflections $[I=2 \sigma(I)]$		7483
Absorption correction method	Semi-empirical based on ψ-scans	Semi-empirical based on ψ-scans
Max/min transmission	0.854, 0.685	0.789, 0.736
Parameters	742	833
Final R indices $[I=2 \sigma(I)]$	$\begin{aligned} & R_{1}=0.0349, \\ & w R_{2}=0.0708 \end{aligned}$	$\begin{aligned} & R_{1}=0.0290, \\ & w R_{2}=0.0562 \end{aligned}$
R indices (all data)	$\begin{aligned} & R_{1}=0.0538, \\ & w R_{2}=0.0784 \end{aligned}$	$\begin{aligned} & R_{1}=0.0427, \\ & w R_{2}=0.0610 \end{aligned}$
Weighting scheme	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}\right)^{2}=0.0357\right. \\ & \left.P^{2}=1.3955 P\right]^{\mathrm{b}} \end{aligned}$	$\begin{aligned} & 7 w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}\right)^{2}=0.218\right. \\ & \left.P^{2}=5.1321 P\right]^{\mathrm{b}} \end{aligned}$
$(\Delta / \sigma)_{\text {max }}$	0.084	0.067
$\underset{\left(\mathrm{e} \AA^{-3}\right)}{\operatorname{Max} \min } \Delta \rho$	0.616, 0.529	0.433, -0.354
Goodness of fit on F^{2}		1.053

${ }^{\text {a }}$ There are two independent molecules in the unit cell.
${ }^{\mathrm{b}} P=\left[\max \left(F_{\mathrm{o}}^{2}, 0\right)=2 F_{\mathrm{c}}^{2}\right] / 3$.
dent molecules within the asymmetric unit. For each structure the independent molecules show only minor differences. Both complexes exhibit three-legged piano stool geometry about the rhodium atoms with $\mathrm{P}-\mathrm{Rh}-$ Cl and $\mathrm{Cl}-\mathrm{Rh}-\mathrm{Cl}$ angles of $\mathrm{ca} .90^{\circ}$. The bond distances and angles about the rhodium atoms are comparable with those of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2} \mathrm{~L}$ complexes $(\mathrm{L}=$ $\mathrm{PPh}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{SiMe}_{2} \mathrm{OH}[8], \mathrm{P}(\mathrm{OEt})_{3}[10], \mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-\right.$ 2,6) [11], $\mathrm{PPh}(\mathrm{OPh})_{2}[11]$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}_{6} \mathrm{~F}_{13}-4\right)_{3}$ [13]) and $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}\right]_{2}(\mu$-dmpe) [9]. The $\mathrm{Rh}-\mathrm{P}$ and $\mathrm{Rh}-\mathrm{Cl}$ distances of $\mathbf{1}$ and 2 lie within the ranges of these distances for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2} \mathrm{~L}: 2.254(3)-2.332(3)$ and $2.378(3)-2.412(2) \AA$, respectively, and the $\mathrm{C}_{5} \mathrm{Me}_{4}{ }^{-}$

H (centroid) -Rh distances of $\mathbf{1}$ and $\mathbf{2}$ are consistent with the $\mathrm{Cp}^{*}-\mathrm{Rh}$ distances of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2} \mathrm{~L}$. Thus, there is no discernible difference in the effects of tetramethyl- and pentamethyl-cyclopentadienyl ligands on these distances. The $\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}$ (centroid)- $\mathrm{Rh}-\mathrm{P}$ angles (ca. 130°) and $\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}$ (centroid) $-\mathrm{Rh}-\mathrm{Cl}$ angles (ca. 120°) are comparable with the $\mathrm{Cp}^{*}-\mathrm{Rh}-\mathrm{P}$ and $\mathrm{Cp}^{*}-\mathrm{Rh}-\mathrm{Cl}$ angles reported for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2} \mathrm{~L}$ $\left(\mathrm{L}=\mathrm{PPh}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-2,6\right)\right.$ [11], $\mathrm{PPh}(\mathrm{OPh})_{2}$ [11] and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}_{6} \mathrm{~F}_{13}-4\right)_{3}$ [13]). In both molecules of $\mathbf{1}$ and $\mathbf{2}$ the $\mathrm{C}-\mathrm{H}$ bond is eclipsed with the $\mathrm{Rh}-\mathrm{P}$ bond, i.e. the $\mathrm{H}-\mathrm{C}-\mathrm{Rh}-\mathrm{P}$ torsion angle is ca. 0° and $\mathrm{P}-\mathrm{Rh}-\mathrm{CH}$ is ca. 90°. Presumably this is a consequence of the greater steric requirements of the phosphine compared to the chloride ligands. The $\mathrm{Rh}-\mathrm{C}$ distances of $\mathbf{1}$ and $\mathbf{2}$ lie in the range for those of the $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2} \mathrm{~L}$ complexes (2.14(2)-2.25(2) $\AA)$. Although it has been commented that for the structure of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}$ [10] the distances of $\mathrm{Rh}-\mathrm{C}$ approximately trans to the phosphorus ligand are longer than the other $\mathrm{Rh}-\mathrm{C}$ distances, the differences are not significant when the estimated standard deviations are considered. This is also the case for the other $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2} \mathrm{~L}$ complexes. In contrast, the Rh-C distances of $\mathbf{1}$ and $\mathbf{2}$ do show significant differences. For both molecules of each structure $\mathrm{Rh}-\mathrm{C}(3)$ and $\mathrm{Rh}-\mathrm{C}(4)$, which are approximately trans to the phosphorus atom ($\mathrm{P}-\mathrm{Rh}-\mathrm{C}$ angles of ca. 150°), lie in the range $2.216(4)-2.247(6) \AA$. The other $\mathrm{Rh}-\mathrm{CMe}$ distances (2.155(4)-2.176(4) \AA) are at least $0.015 \AA$ shorter and the $\mathrm{Rh}-\mathrm{CH}$ distances (2.127(4) to $2.146(3) \AA$) are at least $0.05 \AA$ shorter than $\mathrm{Rh}-\mathrm{C}(3)$ and $\mathrm{Rh}-\mathrm{C}(4)$. Thus, compared to the ($\eta^{5}-$ $\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2} \mathrm{~L}$ complexes the rhodium atoms in $\mathbf{1}$ and $\mathbf{2}$ are displaced from the axis normal to the C_{5} centroid towards the CH carbon atom of the cyclopentadienyl ring. The $\mathrm{C}-\mathrm{C}$ ring distances also show considerable variation. The $\mathrm{HC}-\mathrm{CH}_{3}$ distances range from 1.381(6) to $1.429(4) \AA$ and the $\mathrm{C}(3)-\mathrm{C}(4)$ distances from $1.404(6)$ to $1.416(4) \AA$, whereas the other $\mathrm{MeC}-\mathrm{CMe}$ distances are significantly longer (1.442(4) to $1.460(6)$ \AA), with the exception of $\mathrm{C}(4)-\mathrm{C}(5)$ for one molecule of $\mathbf{1}(1.427(6) \AA)$. These values may be compared to the mean values of $1.42(2)$ and $1.431 \AA$ for $\left[\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}\right]_{2}\left(\mu\right.$-dmpe) [9] and ($\left.\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}$ $\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}_{6} \mathrm{~F}_{13}-4\right)_{3}\right\}$ [13], respectively. The internal $\mathrm{C}-$ $\mathrm{C}-\mathrm{C}$ ring angles range between 106.4(3) and 110.3(4) with no significant differences between the angles at CMe and those at CH . The $\mathrm{C}-\mathrm{CH}_{3}$ distances lie in the range $1.479(6)$ to $1.531(6) \AA$ consistent with the mean values of $1.49(3)$ and $1.498 \AA$ for the phosphine complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}\right]_{2}\left(\mu\right.$-dmpe) [9] and ($\eta^{5}-$ $\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}\left\{\mathrm{P}_{\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}_{6} \mathrm{~F}_{13}-4\right)_{3}\right\} \quad[13], \quad \text { respectively. }}\right.$ There is no significant difference between the $\mathrm{C}-\mathrm{CH}_{3}$ distances of the 1- and 4- positions and those of the 2and 3 -positions.

Table 3
Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}_{2}\left(\mathrm{PPh}_{3}\right)$ (1) and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}_{2}\left\{\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right\}$ (2)

	1		2	
	Molecule A Molecule B Molecule A Molecule B			
Bond lengths (A)				
$\mathrm{Rh}(1)-\mathrm{P}(1)$	$2.3058(10)$	$2.3117(10)$	2.3101(8)	2.3084(8)
$\mathrm{Rh}(1)-\mathrm{Cl}(1)$	$2.4088(10)$	2.4126(10)	$2.3842(8)$	$2.3947(8)$
$\mathrm{Rh}(1)-\mathrm{Cl}(2)$	$2.4050(10)$	2.3847(10)	2.4097(8)	2.3781(8)
$\mathrm{Cp}^{\dagger}-\mathrm{Rh}(1)$	1.815	1.823	1.813	1.817
$\mathrm{Rh}(1)-\mathrm{C}(1)$	2.127(4)	2.141(4)	2.142(3)	2.146(3)
$\mathrm{Rh}(1)-\mathrm{C}(2)$	2.155(4)	2.176(4)	2.163(3)	2.172(3)
$\mathrm{Rh}(1)-\mathrm{C}(3)$	2.239(4)	2.230(4)	2.229(3)	2.221(3)
$\mathrm{Rh}(1)-\mathrm{C}(4)$	2.247(4)	2.216(4)	2.216(3)	2.225(3)
$\mathrm{Rh}(1)-\mathrm{C}(5)$	2.159(4)	2.160(4)	2.164(3)	2.167(3)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.424(6)	1.403(6)	1.429(4)	1.420(4)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.459(5)	1.460(6)	1.442(4)	1.443(4)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.409(5)$	1.404(6)	1.411(4)	1.416(4)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.450(6)	1.427(6)	1.450(4)	1.442(4)
$\mathrm{C}(5)-\mathrm{C}(1)$	$1.422(6)$	1.381(6)	1.412(4)	1.428(4)
$\mathrm{C}(2)-\mathrm{C}(6)$	$1.485(6)$	1.508(6)	$1.492(5)$	1.491(4)
$\mathrm{C}(3)-\mathrm{C}(7)$	$1.488(6)$	1.479(6)	$1.486(5)$	1.489(5)
$\mathrm{C}(4)-\mathrm{C}(8)$	1.486(6)	1.503(6)	$1.488(5)$	1.492(5)
$\mathrm{C}(5)-\mathrm{C}(9)$	1.497(6)	1.531(6)	1.490 (5)	1.493(5)
$\mathrm{P}(1)-\mathrm{C}(11)$	1.834(4)	1.824(4)	1.834(3)	1.830(3)
$\mathrm{P}(1)-\mathrm{C}(21)$	1.838(4)	1.824(4)	$1.829(3)$	$1.835(3)$
$\mathrm{P}(1)-\mathrm{C}(31)$	1.821(4)	1.820(4)	1.848(3)	1.837(3)
Bond angles $\left(^{\circ}\right.$)				
$\mathrm{Cp}^{\dagger}-\mathrm{Rh}(1)-\mathrm{P}(1)^{\mathrm{a}}$	127.7	129.3	130.5	130.6
$\mathrm{Cp}^{\dagger}-\mathrm{Rh}(1)-\mathrm{Cl}(1)^{\mathrm{a}}$	121.6	119.5	122.3	120.3
$\mathrm{Cp}^{\dagger}-\mathrm{Rh}(1)-\mathrm{Cl}(2)^{\text {a }}$	122.7	125.4	120.0	123.1
$\mathrm{Cl}(1)-\mathrm{Rh}(1)-\mathrm{P}(1)$	92.60(3)	90.10(4)	88.08(3)	91.93(3)
$\mathrm{Cl}(2)-\mathrm{Rh}(1)-\mathrm{P}(1)$	88.95(3)	90.19(4)	92.26(3)	87.67(3)
$\mathrm{Cl}(1)-\mathrm{Rh}(1)-\mathrm{Cl}(2)$	93.70(4)	91.69(4)	93.97(3)	93.06(3)
$\mathrm{P}(1)-\mathrm{Rh}(1)-\mathrm{C}(1)$	93.23(11)	96.08(12)	96.92(9)	96.80(9)
$\mathrm{P}(1)-\mathrm{Rh}(1)-\mathrm{C}(2)$	109.27(11)	108.54(11)	108.59(9)	$118.55(9)$
$\mathrm{P}(1)-\mathrm{Rh}(1)-\mathrm{C}(3)$	147.71(11)	146.04(13)	145.43(9)	156.86(9)
$\mathrm{P}(1)-\mathrm{Rh}(1)-\mathrm{C}(4)$	151.55(11)	155.32(12)	157.73(8)	146.44(9)
$\mathrm{P}(1)-\mathrm{Rh}(1)-\mathrm{C}(5)$	113.20(11)	117.35(13)	119.18(9)	109.39(9)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	106.6(4)	106.4(4)	106.4(3)	107.3(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	108.2(3)	107.0(4)	106.4(3)	108.0(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	108.6(3)	108.6(4)	108.0(3)	108.7(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	106.9(4)	107.6(4)	107.0(3)	106.6(3)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	109.6(4)	110.3(4)	109.7(3)	109.4(3)
$\mathrm{Rh}(1)-\mathrm{P}(1)-\mathrm{C}(11)$	115.62(12)	116.79(12)	114.02(9)	112.34(10)
$\mathrm{Rh}(1)-\mathrm{P}(1)-\mathrm{C}(21)$	119.51(12)	118.86(13)	120.94(10)	121.99(10)
$\mathrm{Rh}(1)-\mathrm{P}(1)-\mathrm{C}(31)$	109.29(11)	108.33(12)	$111.75(9)$	110.89(10)
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(21)$	102.5(2)	101.9(2)	101.92(13)	100.67(13)
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(31)$	105.2(2)	106.8(2)	104.64(13)	107.51(14)
$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}(31)$	103.2(2)	102.8(2)	101.66(12)	102.07(13)
$\mathrm{H}-\mathrm{C}(1)-\mathrm{Rh}(1)-\mathrm{P}(1)-0.2$		-6.2	9.1	-7.9

${ }^{\mathrm{a}} \mathrm{Cp}^{\dagger}$ denotes the centroid of the tetramethylcyclopentadienyl ring.

The $\mathrm{P}-\mathrm{C}$ distances of $\mathbf{1}$ and $\mathbf{2}$ are identical within experimental error and consistent with the mean value of $1.831 \AA$ for the triarylphosphine complex (η^{5} $\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}\left\{\mathrm{P}_{\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}_{6} \mathrm{~F}_{13}-4\right)_{3}\right\} \text { [13]. Both molecules }}\right.$ of $\mathbf{1}$ possesses $\mathrm{Rh}-\mathrm{P}-\mathrm{C}$ angles of ca. 109, 116 and 119°.

The geometry about the phosphorus atoms of $\mathbf{2}$ is dissimilar to that of $\mathbf{1}$. Both molecules of $\mathbf{2}$ possess one $\mathrm{Rh}-\mathrm{P}-\mathrm{C}_{6} \mathrm{H}_{5}$ angle of ca. 120° and two other $\mathrm{Rh}-\mathrm{P}-\mathrm{C}$ angles of $110.89(10)-114.02(9)^{\circ}$, which are comparable with the values of $118.2(2), 113.0(2)$ and $113.0(2)^{\circ}$ for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}_{6} \mathrm{~F}_{13}-4\right)_{3}\right\}$.

3. Conclusions

In conclusion we have prepared η^{5}-tetramethylcyclopentadienyl rhodium phosphine and isonitrile complexes. The spectroscopic properties of the neutral complexes $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}_{2} \mathrm{~L}$ and the salts $\left[\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhClL}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)\right]^{+} \cdot \mathrm{BF}_{4}^{-} \quad\left(\mathrm{L}=\mathrm{PPh}_{3}, \quad \mathrm{PPh}_{2}-\right.$ $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ or $\left.\mathrm{CNC}_{6} \mathrm{H}_{11}\right)$ are similar to those of the pen-tamethyl-cyclopentadienyl analogues. However, δ_{P} of the salt $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}(\mathrm{dppe})\right]^{+} \cdot \mathrm{BF}_{4}^{-}$is shifted by 42.5 ppm to lower frequency of that of the pen-tamethyl-cyclopentadienyl analogue. The structures of the phosphine complexes $\mathbf{1}$ and $\mathbf{2}$ show that, unlike those of the pentmethylcyclopentadienyl analogues, the cyclopentadienyl ring is displaced so that the $\mathrm{Rh}-\mathrm{C}$ distances are dissimilar. The $\mathrm{Rh}-\mathrm{CH}$ bond distance and $\mathrm{Rh}-\mathrm{CMe}$ bond distances for the 1 and 4 positions are shorter than those of $\mathrm{Rh}-\mathrm{CMe}$ bonds for the 2 and 3 positions, which are approximately trans to the phosphine. This is evidently a consequence of the electronic differences between the carbon atoms of the tetramethylcyclopentadienyl ring.

4. Experimental

4.1. General procedures

The ${ }^{1} \mathrm{H}$-, ${ }^{19} \mathrm{~F}$ - and ${ }^{31} \mathrm{P}$-NMR spectra were recorded on a Bruker DPX300 spectrometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were referenced internally using the residual protio solvent resonance relative to $\mathrm{SiMe}_{4}(\delta 0),{ }^{19} \mathrm{~F}$ - and ${ }^{31} \mathrm{P}$-NMR spectra externally to CFCl_{3} and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$, respectively using the high frequency positive convention. All chemical shifts (δ) are quoted in ppm and coupling constants in Hz . Abbreviations used in multiplicities are: s , singlet; d , doublet; t , triplet; m , multiplet. Elemental analyses were carried out by A.S.E.P., The School of Chemistry, The Queen's University of Belfast.

4.2. Reagents

The compounds dppe, $\mathrm{NaBF}_{4}, \mathrm{PPh}_{3}, \mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ and $\mathrm{CNC}_{6} \mathrm{H}_{11}$ (Aldrich) were used as supplied. [$\left(\eta^{5}-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}(\mu-\mathrm{Cl})\right]_{2}[15]$ was prepared as described for $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}(\mu-\mathrm{Cl})\right]_{2}[16]$.

4.3. Preparations

4.3.1. Preparation of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}_{2}\left(\mathrm{PPh}_{3}\right)$ (1)

A solution of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}(\mu-\mathrm{Cl})\right]_{2}(0.077 \mathrm{~g}$, $0.13 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(0.076 \mathrm{~g}, 0.29 \mathrm{mmol})$ in dichloromethane ($50 \mathrm{~cm}^{3}$) was refluxed under nitrogen for 12 h . Addition of hexane and concentration by rotary evaporation afforded $\mathbf{1}$ as a red solid, which was washed with hexane and dried by aspirator. Yield 0.086 g (59\%).

4.3.2. Preparation of $\left(\eta^{5}-C_{5} \mathrm{Me}_{4} H\right) \mathrm{RhCl}_{2}\left\{\mathrm{PPh}_{2}\left(C_{6} F_{5}\right)\right\}$

 (2)$\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}(\mu-\mathrm{Cl})\right]_{2}(0.076 \mathrm{~g}, 0.129 \mathrm{mmol})$ and $\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(0.079 \mathrm{~g}, 0.224 \mathrm{mmol})$ were treated as in Section 4.3.1. Yield $0.098 \mathrm{~g}(68 \%)$.

4.3.3. Preparation of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}_{2}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)$ (3)

A solution of $\mathrm{CNC}_{6} \mathrm{H}_{11}(0.040 \mathrm{~g}, 0.371 \mathrm{mmol})$ in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ was added drop-wise to [$\left(\eta^{5}-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}(\mu-\mathrm{Cl})\right]_{2} \quad(0.110 \mathrm{~g}, \quad 0.185 \mathrm{mmol})$ in dichloromethane $\left(40 \mathrm{~cm}^{3}\right)$ with stirring over 35 min . The solution was concentrated to ca. $15 \mathrm{~cm}^{3}$ by rotary evaporation and hexane ($50 \mathrm{~cm}^{3}$) was added to afford $\mathbf{3}$ as an orange solid, which was washed with hexane and dried by aspirator. Yield $0.124 \mathrm{~g}(83 \%)$.

4.3.4. Preparation of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)\right.$ $\left.\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)\right]^{+} \cdot \mathrm{BF}_{4}^{-}$(4)

Compound $1(0.060 \mathrm{~g}, 0.108 \mathrm{mmol})$ in a mixture of methanol ($50 \mathrm{~cm}^{3}$) and dichloromethane ($20 \mathrm{~cm}^{3}$) was treated with $\mathrm{CNC}_{6} \mathrm{H}_{11}(0.012 \mathrm{~g}, 0.108 \mathrm{mmol})$ and $\mathrm{NaBF}_{4}(0.100 \mathrm{~g}, 0.911 \mathrm{mmol})$. After 45 min the solvent was removed by rotary evaporation and the resulting solid extracted with dichloromethane ($15 \mathrm{~cm}^{3}$). After filtration of the extract, hexane $\left(50 \mathrm{~cm}^{3}\right)$ was added to yield 4 as a yellow-orange solid, which was washed with hexane and dried by aspirator. Yield 0.056 g (69\%).

4.3.5. Preparation of $\left[\left(\eta^{5}-C_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}_{\{ } \mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right\}$ $\left.\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)\right]^{+} \cdot B F_{4}^{-}$(5)

Compound $3(0.050 \mathrm{~g}, 0.124 \mathrm{mmol})$ was treated with $\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(0.044 \mathrm{~g}, 0.124 \mathrm{mmol})$ and $\mathrm{NaBF}_{4}(0.136 \mathrm{~g}$, 1.24 mmol) in a mixture methanol ($50 \mathrm{~cm}^{3}$) and dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$. After 17 h . the solvent was removed by rotary evaporation and the resulting solid extracted with dichloromethane. ($15 \mathrm{~cm}^{3}$). After filtration of the extract, hexane $\left(50 \mathrm{~cm}^{3}\right)$ was added to yield 5 as a yellow solid, which was washed with hexane and dried by aspirator. Yield $0.057 \mathrm{~g}(56 \%)$.

4.3.6. Preparation of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{2}\right]^{+}$ $\cdot B F_{4}^{-}$(6)

Compound 3 ($0.062 \mathrm{~g}, 0.154 \mathrm{mmol}$), $\mathrm{CNC}_{6} \mathrm{H}_{11}(0.017$ $\mathrm{g}, 0.154 \mathrm{mmol})$ and $\mathrm{NaBF}_{4}(2.00 \mathrm{~g}, 1.76 \mathrm{mmol})$ were treated as in Section 4.3.4. Yield $0.051 \mathrm{~g}(60 \%)$.

4.3.7. Preparation of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}(\text { dppe })\right]^{+} \cdot \mathrm{BF}_{4}^{-}$

 (7)The salt NaBF_{4} (ca. $0.3 \mathrm{~g}, 2.7 \mathrm{mmol}$) was added to $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{RhCl}(\mu-\mathrm{Cl})\right]_{2}(0.060 \mathrm{~g}, 0.100 \mathrm{mmol})$ and dppe ($0.080 \mathrm{~g}, 0.200 \mathrm{mmol}$) in methanol $\left(40 \mathrm{~cm}^{3}\right)$ and dichloromethane ($10 \mathrm{~cm}^{3}$) with vigorous stirring. After 30 min the solvent was removed by rotary evaporation and the orange solid extracted into dichloromethane ($70 \mathrm{~cm}^{3}$) and filtered. Concentration of the solution by rotary evaporation and addition of hexane yielded yellow crystals of 7, which were washed with hexane and dried in vacuo. Yield 0.100 g (67\%).

4.4. X-ray crystal structure determinations

Crystals of compounds $\mathbf{1}$ and $\mathbf{2}$ suitable for X-ray structure determination were grown from acetonepetroleum ether (b.p. $100-120^{\circ} \mathrm{C}$) and acetone, respectively. Experimental details and crystal data for $\mathbf{1}$ and $\mathbf{2}$ are listed in Table 1. Data were collected at ca. 150 K using omega scans to which Lorentz and polarisation corrections were applied. Empirical absorption corrections were applied using psi scans. The structures were solved by direct methods and all nonhydrogen atoms were refined with anisotropic thermal parameters. All hydrogen atom positions, except for those attached to $\mathrm{C}(7 \mathrm{~B}), \mathrm{C}(8 \mathrm{~B})$ and $\mathrm{C}(9 \mathrm{~B})$ of $\mathbf{1}$, were located from a difference Fourier and allowed to refine isotropically. For $\mathrm{C}(7 \mathrm{~B}), \mathrm{C}(8 \mathrm{~B})$ and $\mathrm{C}(9 \mathrm{~B})$ of $\mathbf{1}$ the difference map indicated that these methyl groups were disordered and the hydrogens were modelled as having two positions at 50% occupancy and a riding model with fixed thermal parameters, ($U_{i j}=$ $1.5 U_{i j}($ eq)), was used for subsequent refinement. The function minimised for $w R_{2}$ was $\Sigma\left[w\left(\left|F_{\mathrm{o}}\right|^{2}-\mid F_{\mathrm{c}}{ }^{2}\right)\right]$ with reflection weights $w^{-1}=\left[\sigma^{2}\left|F_{\mathrm{o}}\right|^{2}=\left(g_{1} P\right)^{2}=g_{2} P\right]$ where $P=\left[\max \left|F_{\mathrm{o}}\right|^{2}+2 \mid F_{\mathrm{c}}{ }^{2}\right] / 3$ for all F^{2} and the function minimised for R_{1} was $\Sigma\left[w\left(\left|F_{\mathrm{o}}\right|-\mid F_{\mathrm{c}}\right)\right]$. The xscans [17], shelxtl-PC [18] and shelxl-97 [19] packages were used for data collection, reduction, structure solution and refinement.

5. Supplementary material

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC Nos. 115092 (compound 1) and 115093 (compound 2). Copies of the information can be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: +44-1223-336-033; e-mail: de-
posit@ccdc.cam.ac.uk or www: http://www.ccdc.cam. ac.uk).

Acknowledgements

We thank D.E.N.I for support (A.M.F.).

References

[1] M.J. Atherton, J.H. Holloway, E.G. Hope, G.C. Saunders, J. Organomet. Chem. 558 (1998) 209.
[2] (a) M.J. Atherton, J. Fawcett, J.H. Holloway, E.G. Hope, A. Karaçar, D.R. Russell, G.C. Saunders, J. Chem. Soc., Chem. Commun. (1995) 191. (b) M.J. Atherton, J. Fawcett, J.H. Holloway, E.G. Hope, A. Karaçar, D.R. Russell, G.C. Saunders, J. Chem. Soc. Dalton Trans. (1997) 1137.
[3] M. Nieuwenhuyzen, G.C. Saunders, Organometallics, submitted for publication.
[4] (a) R.P. Hughes, in: G. Wilkinson (Ed.), Comprehensive Organometallic Chemistry, vol. 5, Chap. 35, Pergamon, Oxford, 1982, p. 367 . (b) J. Thompson, C. White, P.M. Maitlis, J. Organomet. Chem. 136 (1977) 87. (c) P.M. Maitlis, Acc. Chem. Res. 11 (1978) 301. (d) P.M. Maitlis, Chem. Soc. Rev 10 (1981) 1. (e) B. Klingert, H. Werner, J. Organomet. Chem 252 (1983) C47.
[5] J.W. Kang, K. Moseley, P.M. Maitlis, J. Am. Chem. Soc. 91 (1969) 5970
[6] F. Faraone, V. Marsala, G. Tresoldi, J. Organomet. Chem. 152 (1978) 337.
[7] P. Diversi, G. Ingrosso, A. Lucherini, W. Porzio, M. Zocchi, Inorg. Chem. 19 (1980) 3590.
[8] R.D. Brost, G.C. Bruce, S.L. Grundy, S.R. Stobbart, Inorg Chem. 32 (1993) 5195.
[9] W. Keim, P. Kraneburg, G. Dahmen, G. Deckers, U. Englert, K. Linn, T.P. Spaniol, G. Raabe, C. Kruger, Organometallics 13 (1994) 3085.
[10] S. Ogo, T. Suzuki, Y. Ozawa, K. Isobe, Inorg. Chem. 35 (1996) 6093.
[11] M.J. Atherton, J. Fawcett, A.P. Hill, J.H. Holloway, E.G. Hope, D.R. Russell, G.C. Saunders, R.M.J. Stead, J. Chem. Soc. Dalton Trans. (1997) 1137.
[12] M.J. Atherton, J. Fawcett, J.H. Holloway, E.G. Hope, S.M. Martin, D.R. Russell, G.C. Saunders, J. Organomet. Chem. 555 (1998) 67
[13] J. Fawcett, E.G. Hope, R.D.W. Kemmitt, D.R. Paige, D.R Russell, A.M. Stuart, J. Chem. Soc. Dalton Trans. (1998) 3751.
[14] E.G. Hope, R.D.W. Kemmitt, A.M. Stuart, J. Chem. Soc. Dalton Trans. (1998) 3765.
[15] (a) I.R. Lyatifov, G.M. Dzhafarov, T. K. Kurbanov, Zh. Obshch. Khim. 59 (1989) 1803. (b) P.A. Schofield, H. Adams, N.A. Bailey, E. Cesarotti, C. White, J. Organomet. Chem. 412 (1991) 273.
[16] C. White, A. Yates, P.M. Maitlis, Inorg. Synth. 29 (1992) 228.
[17] J. Fait, xscans: Siemens Analytical X-ray Instrumentation, Siemens, Madison, WI, 1993.
[18] G.M. Sheldrick, shelxtl-PC, Release 5.03: Siemens Analytical X-ray Instruments, Siemens, Madison, WI, 1996.
[19] G.M. Sheldrick, Shelxl-97: Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen, Germany, 1997.

[^0]: * Corresponding author. Tel.: + 44-1232-382117.

 E-mail address: g.saunders@qub.ac.uk (G.C. Saunders)

